It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cell size is believed to influence cell growth and metabolism. Consistently, several studies have revealed that large cells have lower mass accumulation rates per unit mass (i.e. growth efficiency) than intermediate sized cells in the same population. Size-dependent growth is commonly attributed to transport limitations, such as increased diffusion timescales and decreased surface-to-volume ratio. However, separating cell size and cell cycle dependent growth is challenging. To decouple and quantify cell size and cell cycle dependent growth effects we monitor growth efficiency of freely proliferating and cycling polyploid mouse lymphocytes with high resolution. To achieve this, we develop large-channel suspended microchannel resonators that allow us to monitor mass of single cells ranging from 40 pg (small diploid lymphocyte) to over 4000 pg, with a resolution ranging from ~1% to ~0.05%. We find that mass increases exponentially with respect to time in early cell cycle but transitions to linear dependence during late S and G2 stages. This growth behavior repeats with every endomitotic cycle as cells grow in to polyploidy. Overall, growth efficiency changes 29% due to cell cycle. In contrast, growth efficiency did not change due to cell size over a 100-fold increase in cell mass during polyploidization. Consistently, growth efficiency remained constant when cell cycle was arrested in G2. Thus, cell cycle is a primary determinant of growth efficiency and increasing cell size does not impose transport limitations that decrease growth efficiency in cultured mammalian cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer