It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world’s population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project “In Silico Trial for Tuberculosis Vaccine Development” (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare.
Results
We present the application of the Universal Immune System Simulator (UISS) computational modeling infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third represents the latent chronic disease infection scenario during RUTI® vaccine administration.
Conclusions
The application of this computational modeling strategy helpfully contributes to simulate those mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting and guiding the testing of treatments in patients affected by tuberculosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer