It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
This study aimed to evaluate effects of electric vagal nerve stimulation on early postoperation cognitive dysfunction in aged rats.
Methods
A total of 33 male Sprague Dawley rats were selected and assigned randomly to three groups, control group (C, n = 10), splenectomy group (S, n = 10) and splenectomy+vagal nerve stimulation group (SV, n = 13). Behavior and memory of rats were evaluated by Open Field Test and Morris Water Maze. Levels of TNF-α, IL-6 and IL-10 in serum were measured by ELISA. The level of TNF-α protein in hippocampus was assessed by Western blotting. rt-PCR was used to detect mRNA expression of NF-κB in hippocampus.
Results
During anesthesia/operation, vital life signs of rats were stable. In SV group, vagal nerve stimulation decreased heart rate lower than 10% of basic level and kept it at a stable range by regulating stimulation intensity. After stimulation stop, heart rate returned to the basic level again. This indicated that the model of vagal nerve stimulation was successful. Serum levels of TNF-α and IL-6 increased by the operation/anesthesia, but they decreased with vagal nerve stimulation (all P < 0.05). TNF-α protein and mRNA expression of NF-κB in hippocampus were also eliminated by vagal nerve stimulation compared to S group (P < 0.05). Results of Morris Water Maze showed escape latency of postoperation in S group was significantly longer than C group (P < 0.05), and times of crossing platform in S group was lower than that of C group (P < 0.05). Although escape latency of postopration in SV group was shorter than that of S group, there was no significant difference between two groups. Meanwhile there were no significant differences of behavior test in Open Field test between three groups, although vagal nerve stimulation improved partly active explore behavior compared to S group.
Conclusion
The inflammation caused by operation and general anesthesia was an important reason of early postoperation cognitive dysfunction, and electric vagal nerve stimulation could inhibit the inflammation. Meanwhile, vagal nerve stimulation could ameliorate early postoperation cognitive dysfunction partly, but its protective effects were not enough and should be studied and improved in future.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer