Abstract

Producing liquid fuels such as ethanol from CO2, H2O, and renewable electricity offers a route to store sustainable energy. The search for efficient electrocatalysts for the CO2 reduction reaction relies on tuning the adsorption strength of carbonaceous intermediates. Here, we report a complementary approach in which we utilize hydroxide and oxide doping of a catalyst surface to tune the adsorbed hydrogen on Cu. Density functional theory studies indicate that this doping accelerates water dissociation and changes the hydrogen adsorption energy on Cu. We synthesize and investigate a suite of metal-hydroxide-interface-doped-Cu catalysts, and find that the most efficient, Ce(OH)x-doped-Cu, exhibits an ethanol Faradaic efficiency of 43% and a partial current density of 128 mA cm−2. Mechanistic studies, wherein we combine investigation of hydrogen evolution performance with the results of operando Raman spectroscopy, show that adsorbed hydrogen hydrogenates surface *HCCOH, a key intermediate whose fate determines branching to ethanol versus ethylene.

Details

Title
Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen
Author
Luo, Mingchuan 1 ; Wang, Ziyun 1   VIAFID ORCID Logo  ; Li, Yuguang C 1   VIAFID ORCID Logo  ; Li, Jun 2   VIAFID ORCID Logo  ; Li, Fengwang 1   VIAFID ORCID Logo  ; Lum, Yanwei 1   VIAFID ORCID Logo  ; Dae-Hyun Nam 1   VIAFID ORCID Logo  ; Chen, Bin 1 ; Wicks, Joshua 1   VIAFID ORCID Logo  ; Xu, Aoni 1 ; Zhuang, Taotao 1 ; Leow, Wan Ru 1 ; Wang, Xue 1   VIAFID ORCID Logo  ; Cao-Thang Dinh 1   VIAFID ORCID Logo  ; Wang, Ying 1   VIAFID ORCID Logo  ; Wang, Yuhang 1   VIAFID ORCID Logo  ; Sinton, David 3   VIAFID ORCID Logo  ; Sargent, Edward H 1   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada 
 Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada 
 Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada 
Pages
1-7
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2329321632
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.