It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Regular monitoring of water quality in Laguna Lake is important for it supports aquaculture and provides water supply for Metro Manila. Remote sensing makes it possible to monitor the spectral conditions of the lake on a regular time interval and with complete coverage except for the areas with cloud and shadow cover. Along with in-situ water quality measurements, bio-optical models can be developed to determine the relationship between spectral and bio-optical properties of the lake water and consequently enables the estimation of water quality through remote sensing. However, radiometric calibration is needed to minimize the effects of the changing atmospheric conditions over time and to account for the difference in sensors (e.g., Landsat-8 OLI, Sentinel-2 MSI) used for water quality assessment. Canonical correlation analysis is used to detect pseudo-invariant features (PIFs), which are ground objects that do not dramatically vary in spectral properties over time. Road surface and other large man-made infrastructures are the commonly detected PIFs. These PIFs are used to compute for the parameters used to normalize reflectance values of remotely-sensed images obtained on different dates and using different sensors. The normalization resulted to a reduction of difference in reflectance values between the reference image and the adjusted image, though not marginal. This is due to the use of a linear equation to adjust the image, which limits the ability of the reflectance values of the image to fit to the values of the reference image.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Training Center for Applied Geodesy and Photogrammetry, University of the Philippines, Diliman, Philippines
2 Department of Geomatics, National Cheng Kung University, Tainan City, Taiwan