Abstract

Antioxidant activity and neuroprotective activity of three stilbenoids, namely, trans-4-hydroxystilbene (THS), trans-3,5,4′-trihydroxy-stilbene (resveratrol, RES), and trans-3′,4′,3,5-tetrahydroxy-stilbene (piceatannol, PIC), against β-amyloid (Aβ)-induced neurotoxicity in rat primary cortex neurons were evaluated. THS, RES, and PIC significantly scavenged DPPH• and •OH radicals. All three stilbenoids were able to inhibit Aβ neurotoxicity by decreasing intracellular reactive oxygen species (ROS) via the PI3K/Akt signalling pathway. Specifically, stilbenoids significantly promoted Akt phosphorylation; suppressed Bcl-2/Bax expression; and inhibited caspase-9, caspase-3, and PARP cleavage. Molecular docking between stilbenoids with Akt indicated that stilbenoids could form hydrogen bond interactions with the COOH-terminal region of Akt. Additionally, the neuroprotective activity of stilbenoids correlated with the number and position of hydroxyl groups. The lack of meta-dihydroxyl groups on THS did not affect its neuroprotective activity in comparison with RES, whereas the ortho-dihydroxyl moiety on PIC significantly enhanced neuroprotective activity. These results provide new insights into the correlation between the biological activity and chemical structure of stilbenoids.

Details

Title
Antioxidant Activity and Neuroprotective Activity of Stilbenoids in Rat Primary Cortex Neurons via the PI3K/Akt Signalling Pathway
Author
Wen, Haichao; Fu, Zheng; Yangji Wei; Zhang, Xiaoxu; Ma, Liyan; Gu, Liwei; Li, Jingming
First page
2328
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2329976674
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.