Content area
Full text
This method fabricates 3D porous models in one step.
Singapore University of Technology, Singapore
Materials with controlled porosity have found diverse applications in separation, catalysis, energy storage, sensors and actuators, tissue engineering, and drug delivery. Multiple methods have been developed to fabricate well-defined porous materials with the pore sizes ranging from nanometers to millimeters. The introduction of sacrificial templates, for example, can impart porosity to the materials, encapsulating them after the removal of embedded materials. Alternatively, procedures involving phase separation, direct templating, and chemical reaction...





