Abstract

In recent experiments, superconductivity and correlated insulating states were observed in twisted bilayer graphene (TBG) with small magic angles, which highlights the importance of the flat bands near Fermi energy. However, the moiré pattern of TBG consists of more than ten thousand carbon atoms that is not easy to handle with conventional methods. By density functional theory calculations, we obtain a flat band at EF in a novel carbon monolayer coined as cyclicgraphdiyne with the unit cell of eighteen atoms. By doping holes into cyclicgraphdiyne to make the flat band partially occupied, we find that cyclicgraphdiyne with 1/8, 1/4, 3/8 and 1/2 hole doping concentration shows ferromagnetism (half-metal) while the case without doping is nonmagnetic, indicating a hole-induced nonmagnetic-ferromagnetic transition. The calculated conductivity of cyclicgraphdiyne with 1/8, 1/4 and 3/8 hole doping concentration is much higher than that without doping or with 1/2 hole doping. These results make cyclicgraphdiyne really attractive. By studying several carbon monolayers, we find that a perfect flat band may occur in the lattices with both separated or corner-connected triangular motifs with only including nearest-neighboring hopping of electrons, and the dispersion of flat band can be tuned by next-nearest-neighboring hopping. Our results shed insightful light on the formation of flat band in TBG. The present study also poses an alternative way to manipulate magnetism through doping flat band in carbon materials.

Details

Title
Flat Band and Hole-induced Ferromagnetism in a Novel Carbon Monolayer
Author
Jing-Yang, You 1 ; Gu, Bo 2 ; Su, Gang 3 

 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China 
 Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China; Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China 
 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China; Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China; Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China 
Pages
1-7
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2330968981
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.