It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It has been widely established that serotonin plays important role in the regulation of emotional and social behaviour. Rodents with a genetic deletion of the serotonin reuptake transporter (SERT) are used as a model to study lifelong consequences of increased extracellular 5‐HT levels due to its impaired reuptake. SERT knock-out (SERT-KO) mice and rats consistently showed anxiety-like symptoms and social deficits. Nevertheless, the impact of SERT deletion on socioemotional ultrasonic communication has not been addressed. Here we investigated the impact of lifelong serotonin abundance on ultrasonic vocalisation accompanying social interactions and open field exploration in rats. SERT-KO rats displayed reduced overall duration of social contacts, but increased time spent on following the conspecific. The altered pattern of social behaviour in SERT-KO rats was accompanied by the structural changes in ultrasonic vocalisations, as they differed from their controls in distribution of call categories. Moreover, SERT deletion resulted in anxiety-like behaviours assessed in the open field test. Their anxious phenotype resulted in a lower tendency to emit appetitive 50-kHz calls during novelty exploration. The present study demonstrates that genetic deletion of SERT not only leads to the deficits in social interaction and increased anxiety but also affects ultrasonic communication.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Maj Institute of Pharmacology Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Kraków, Poland
2 Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands