Full Text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low clouds persist in the summer Arctic with important consequences for the radiation budget. In this study, we simulate the linear relationship between liquid water content (LWC) and cloud droplet number concentration (CDNC) observed during an aircraft campaign based out of Resolute Bay, Canada, conducted as part of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments study in July 2014. Using a single-column model, we find that autoconversion can explain the observed linear relationship between LWC and CDNC. Of the three autoconversion schemes we examined, the scheme using continuous drizzle (Khairoutdinov and Kogan, 2000) appears to best reproduce the observed linearity in the tenuous cloud regime (Mauritsen et al., 2011), while a scheme with a threshold for rain (Liu and Daum, 2004) best reproduces the linearity at higher CDNC. An offline version of the radiative transfer model used in the Canadian Atmospheric Model version 4.3 is used to compare the radiative effects of the modelled and observed clouds. We find that there is no significant difference in the upward longwave cloud radiative effect at the top of the atmosphere from the three autoconversion schemes (p=0.05) but that all three schemes differ at p=0.05 from the calculations based on observations. In contrast, the downward longwave and shortwave cloud radiative effect at the surface for the Wood (2005b) and Khairoutdinov and Kogan (2000) schemes do not differ significantly (p=0.05) from the observation-based radiative calculations, while the Liu and Daum (2004) scheme differs significantly from the observation-based calculation for the downward shortwave but not the downward longwave fluxes.

Details

Title
Modelling the relationship between liquid water content and cloud droplet number concentration observed in low clouds in the summer Arctic and its radiative effects
Author
Dionne, Joelle 1 ; Knut von Salzen 2   VIAFID ORCID Logo  ; Cole, Jason 3   VIAFID ORCID Logo  ; Rashed Mahmood 4   VIAFID ORCID Logo  ; Leaitch, W Richard 3 ; Lesins, Glen 1 ; Folkins, Ian 1 ; Chang, Rachel Y-W 1   VIAFID ORCID Logo 

 Physics and Atmospheric Science Department, Dalhousie University, Halifax, Canada 
 Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada; School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada; Earth, Ocean, and Atmospheric Sciences Department, University of British Columbia, Vancouver, Canada 
 Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada 
 School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada; now at: Barcelona Supercomputing Center, Barcelona, Spain 
Pages
29-43
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331780541
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.