Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

[...]new approaches to treatment are vital in an attempt to improve outcomes. Specifically, many proteins related to both the cell cycle and DNA repair pathways are known SUMOylation targets, and accordingly, this PTM plays a key role in the maintenance of genomic stability, leading to considerable interest in understanding the SUMO pathway in cancer [7,8,9]. In acute promyelocytic leukemia (APL), a chromosomal translocation involving chromosomes 15 and 17 leads to the creation of the PML-retinoic acid receptor-α (PML-RARα) fusion oncoprotein [49,50]. [...]many oncoproteins and tumor suppressors promote carcinogenesis through the enhancement, absence, or dysfunction of their actions in the cell cycle or the DDR, and SUMOylation has been implicated in the function of a number of these cancer-associated proteins including p53, RB, BRCA1, MYC, MDM2, and cyclin D1 [59,65,66,67,68,69].

Details

Title
SUMOylation in Glioblastoma: A Novel Therapeutic Target
Author
Fox, Brandon M; Janssen, Andrew; Estevez-Ordonez, Dagoberto; Gessler, Florian; Vicario, Nunzio; Chagoya, Gustavo; Elsayed, Galal; Sotoudeh, Houman; Stetler, William; Friedman, Gregory K; Bernstock, Joshua D
Publication year
2019
Publication date
2019
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2332335021
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.