It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI− clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI− and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico (GRID:grid.418275.d) (ISNI:0000 0001 2165 8782)
2 Universidad Autónoma del Estado de Hidalgo, Área Académica de Nutrición, Instituto de Ciencias de la Salud, Pachuca Hidalgo, Mexico (GRID:grid.412866.f) (ISNI:0000 0001 2219 2996)
3 Instituto Politécnico Nacional, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico (GRID:grid.418275.d) (ISNI:0000 0001 2165 8782)