Full text

Turn on search term navigation

© 2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Histogram-based thresholding is one of the widely applied techniques for conducting color image segmentation. The key to such techniques is the selection of a set of thresholds that can discriminate objects and background pixels. Many thresholding techniques have been proposed that use the shape information of histograms and identify the optimum thresholds at valleys. In this work, we introduce the novel concept of a hierarchical-histogram, which corresponds to a multigranularity abstraction of the color image. Based on this, we present a new histogram thresholding—Adaptive Hierarchical-Histogram Thresholding (AHHT) algorithm, which can adaptively identify the thresholds from valleys. The experimental results have demonstrated that the AHHT algorithm can obtain better segmentation results compared with the histon-based and the roughness-index-based techniques with drastically reduced time complexity.

Details

Title
Color image segmentation using adaptive hierarchical-histogram thresholding
Author
Li, Min; Wang, Lei; Deng, Shaobo; Zhou, Chunhua
First page
e0226345
Section
Research Article
Publication year
2020
Publication date
Jan 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2335631150
Copyright
© 2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.