It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Prediction of pathogenic genes is crucial for disease prevention, diagnosis, and treatment. But traditional genetic localization methods are often technique-difficulty and time-consuming. With the development of computer science, computational biology has gradually become one of the main methods for finding candidate pathogenic genes.
Methods
We propose a pathogenic genes prediction method based on network embedding which is called Multipath2vec. Firstly, we construct an heterogeneous network which is called GP−network. It is constructed based on three kinds of relationships between genes and phenotypes, including correlations between phenotypes, interactions between genes and known gene-phenotype pairs. Then in order to embedding the network better, we design the multi-path to guide random walk in GP−network. The multi-path includes multiple paths between genes and phenotypes which can capture complex structural information of heterogeneous network. Finally, we use the learned vector representation of each phenotype and protein to calculate the similarities and rank according to the similarities between candidate genes and the target phenotype.
Results
We implemented Multipath2vec and four baseline approaches (i.e., CATAPULT, PRINCE, Deepwalk and Metapath2vec) on many-genes gene-phenotype data, single-gene gene-phenotype data and whole gene-phenotype data. Experimental results show that Multipath2vec outperformed the state-of-the-art baselines in pathogenic genes prediction task.
Conclusions
We propose Multipath2vec that can be utilized to predict pathogenic genes and experimental results show the higher accuracy of pathogenic genes prediction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer