Abstract

Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.

Emergent quantum phenomena such as quantized anomalous Hall effect may be realized in magnetic topological materials. Here, Hu et al. discovered an intrinsic natural heterostructural Z2 antiferromagnetic topological insulator MnBi4Te7 with low out-of-plane saturation fields.

Details

Title
A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
Author
Hu Chaowei 1   VIAFID ORCID Logo  ; Gordon, Kyle N 2 ; Liu, Pengfei 3 ; Liu, Jinyu 1 ; Zhou, Xiaoqing 2   VIAFID ORCID Logo  ; Hao Peipei 2 ; Narayan Dushyant 2 ; Emmanouilidou Eve 1 ; Sun, Hongyi 3 ; Liu, Yuntian 3 ; Brawer Harlan 1 ; Ramirez, Arthur P 4 ; Ding, Lei 5   VIAFID ORCID Logo  ; Cao Huibo 5   VIAFID ORCID Logo  ; Liu Qihang 6 ; Dessau Dan 7   VIAFID ORCID Logo  ; Ni, Ni 1   VIAFID ORCID Logo 

 University of California, Department of Physics and Astronomy and California NanoSystems Institute, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of Colorado, Department of Physics, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564) 
 Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Technology and Department of Physics, Shenzhen, China (GRID:grid.263817.9) 
 University of California, Department of Physics, Santa Cruz, USA (GRID:grid.205975.c) (ISNI:0000 0001 0740 6917) 
 Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Technology and Department of Physics, Shenzhen, China (GRID:grid.263817.9) ; Southern University of Science and Technology, Guangdong Provincial Key Laboratory for Computational Science and Material Design, Shenzhen, China (GRID:grid.263817.9) 
 University of Colorado, Department of Physics, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564) ; University of Colorado, Center for Experiments on Quantum Materials, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2342982488
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.