Abstract
Background
Small cell lung cancer (SCLC) is an aggressive cancer often presenting in an advanced stage and prognosis is poor. Early response evaluation may have impact on the treatment strategy.
Aim
We evaluated 18F-fluorothymidine-(FLT)-PET/diffusion-weighted-(DW)-MRI early after treatment start to describe biological changes during therapy, the potential of early response evaluation, and the added value of FLT-PET/DW-MRI.
Methods
Patients with SCLC referred for standard chemotherapy were eligible. FLT-PET/DW-MRI of the chest and brain was acquired within 14 days after treatment start. FLT-PET/DW-MRI was compared with pretreatment FDG-PET/CT. Standardized uptake value (SUV), apparent diffusion coefficient (ADC), and functional tumor volumes were measured. FDG-SUVpeak, FLT-SUVpeak, and ADCmedian; spatial distribution of aggressive areas; and voxel-by-voxel analyses were evaluated to compare the biological information derived from the three functional imaging modalities. FDG-SUVpeak, FLT-SUVpeak, and ADCmedian were also analyzed for ability to predict final treatment response.
Results
Twelve patients with SCLC completed FLT-PET/MRI 1–9 days after treatment start. In nine patients, pretreatment FDG-PET/CT was available for comparison. A total of 16 T-sites and 12 N-sites were identified. No brain metastases were detected. FDG-SUVpeak was 2.0–22.7 in T-sites and 5.5–17.3 in N-sites. FLT-SUVpeak was 0.6–11.5 in T-sites and 1.2–2.4 in N-sites. ADCmedian was 0.76–1.74 × 10− 3 mm2/s in T-sites and 0.88–2.09 × 10−3 mm2/s in N-sites. FLT-SUVpeak correlated with FDG-SUVpeak, and voxel-by-voxel correlation was positive, though the hottest regions were dissimilarly distributed in FLT-PET compared to FDG-PET. FLT-SUVpeak was not correlated with ADCmedian, and voxel-by-voxel analyses and spatial distribution of aggressive areas varied with no systematic relation. LT-SUVpeak was significantly lower in responding lesions than non-responding lesions (mean FLT-SUVpeak in T-sites: 1.5 vs. 5.7; p = 0.007, mean FLT-SUVpeak in N-sites: 1.6 vs. 2.2; p = 0.013).
Conclusions
FLT-PET and DW-MRI performed early after treatment start may add biological information in patients with SCLC. Proliferation early after treatment start measured by FLT-PET is a promising predictor for final treatment response that warrants further investigation.
Trial registration
Clinicaltrials.gov,
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Copenhagen, Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen Ø, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X); University of Copenhagen, Cluster for Molecular Imaging, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)
2 University of Copenhagen, Department of Oncology, Rigshospitalet, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)
3 University of Copenhagen, Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen Ø, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)
4 University of Copenhagen, Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen Ø, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X); Kings College London, PET Centre, School of Biomedical Engineering and Imaging Science, London, UK (GRID:grid.13097.3c) (ISNI:0000 0001 2322 6764)