It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Tuberculosis (TB) remains a major public health problem in many developing countries. Exploratory spatial analysis is a powerful instrument in spatial health research by virtue of its capacity to map disease distribution and associated risk factors at the population level. The aim of the present study was to describe the epidemiologic characteristics and spatial distribution of new cases of TB reported during the period 2002–2012 in Divinopolis, a midsized city located in the state of Minas Gerais, southeastern Brazil.
Methods
Sociodemographic and clinical data relating to the study cases were retrieved from the national Brazilian database and geocoded according to residential address. Choropleth and kernel density maps were constructed and a spatial-temporal analysis was performed. Tracts defined by the 2010 national census were classified as sectors with higher or lower densities of new TB cases based on the kernel density map. Multivariate logistic analysis was used to compare the two types of sectors according to income, level of literacy and population density.
Results
A total of 326 new cases of TB were reported during the study period. Residential addresses relating to 309 (94.8 %) of these were available in the SINAN database and the locations were geocoded and mapped. The average incidence of TB during the study period was 14.5/100,000 inhabitants. Pulmonary TB was the most predominant form (73.6 %) and 74.5 % of patients had been cured. The percentage of cases was highest in males (67.8 %) and individuals aged 25–44 years (41.1 %), and lowest in children aged less than 15 years (4.6 %). The disease was spatially distributed throughout the urban district. The incidence rate among urban census tracts ranged from 0.06 to 1.1 %, and the disease occurred predominantly in the downtown area (99.3 %). Higher population density was associated significantly with increased odds of living in a sector with a “higher density of cases”, even after adjusting for income and education (odds ratio = 13.7).
Conclusions
The highest density of cases was strongly associated with higher population density but not with lower income or level of literacy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer