Abstract
Background
Zika infection during pregnancy (ZIKVP) is known to be associated with adverse outcomes. Studies on this matter involve both rare outcomes and rare exposures and methodological choices are not straightforward. Cohort studies will surely offer more robust evidences, but their efficiency must be enhanced. We aim to contribute to the debate on sample selection strategies in cohort studies to assess outcomes associated with ZKVP.
Main body of the abstract
A study can be statistically more efficient than another if its estimates are more accurate (precise and valid), even if the studies involve the same number of subjects. Sample size and specific design strategies can enhance or impair the statistical efficiency of a study, depending on how the subjects are distributed in subgroups pertinent to the analysis. In most ZIKVP cohort studies to date there is an a priori identification of the source population (pregnant women, regardless of their exposure status) which is then sampled or included in its entirety (census). Subsequently, the group of pregnant women is classified according to exposure (presence or absence of ZIKVP), respecting the exposed:unexposed ratio in the source population. We propose that the sample selection be done from the a priori identification of groups of pregnant women exposed and unexposed to ZIKVP. This method will allow for an oversampling (even 100%) of the pregnant women with ZKVP and a optimized sampling from the general population of pregnant women unexposed to ZIKVP, saving resources in the unexposed group and improving the expected number of incident cases (outcomes) overall.
Conclusion
We hope that this proposal will broaden the methodological debate on the improvement of statistical power and protocol harmonization of cohort studies that aim to evaluate the association between Zika infection during pregnancy and outcomes for the offspring, as well as those with similar objectives.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer