It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diapause is an endocrine controlled arrested metabolic state to delay development or reproduction under unfavorable conditions. To gain an understanding of importance of diapause for ecological adaptation, it is important to study regulation of diapause in insects. We examined genetics of diapause in Chilo partellus by crossing the hibernating (HD), aestivating (AD), post-hibernating (PHD), post-aestivating (PAD), and nondiapause (ND) strains. Reciprocal crosses were also made to gain full understanding of diapause regulation and the maternal effects, if any. Data were recorded on fecundity, egg hatching, larval survival, diapause induction and termination, adult emergence, and morphometrics of larvae, pupae and adults in the parents (P1, P2), F1 hybrids, and the reciprocal crosses. Genetic analysis showed that AD strain is general combiner, which also improved egg hatching, larval survival, diapause termination, adult emergence and proportion of females in the progenies. Incidence of diapause was highest in HD × AD, whereas termination was greatest in PHD × AD. However, ND strain and its reciprocal crosses with other strains did not exhibit any noticeable developmental response associated with diapause. Specific combining ability analysis suggested that where PHD and AD strains exist together there will be likely reduction in diapause incidence, increased survival with greater fitness and faster multiplication of their progenies resulting in outbreak of C. partellus. Degree of dominance estimates revealed that diapause, developmental and morphometric traits in C. partellus are governed by over dominance gene effects, and mainly depend on parental diapause history.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India (GRID:grid.418196.3) (ISNI:0000 0001 2172 0814)
2 ICRISAT, Patancheru, India (GRID:grid.419337.b) (ISNI:0000 0000 9323 1772)
3 Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India (GRID:grid.418196.3) (ISNI:0000 0001 2172 0814)
4 ICRISAT, Patancheru, India (GRID:grid.419337.b) (ISNI:0000 0000 9323 1772); Dr. YS Parmar University of Horticulture & Forestry, Nauni, Solan, India (GRID:grid.419337.b)