Content area
Abstract
Integrative nanobiotechnology utilizes natural ideas and materials for manufacturing nanoscale devices. As living organisms traditionally represent a good model for engineers to learn from, biological components of interest, with optimal functionality, have been used in the creation of biotic/abiotic hybrid devices. As an example, bacteriorhodopsin/F^sub 0^F^sub 1^-ATP-synthase-incorporated polymer vesicles provide a model of hybrid protein/artificial synthetic membrane system to perform biological functions. Some potential applications are the construction of intervesicular/intravesicular communications, such as excitable vesicles (EVs), for biocomputer and biomolecular motor-powered nanoelectromechanical systems (NEMS) for nanomedicine. Finally, advanced biotic/abiotic hybrid technology is expected to provide an alternative method to conventional fabrication technology to meet the increasing demands by saving enormous engineering efforts.[PUBLICATION ABSTRACT]





