It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
G Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds. We present here the NMR structure of the agonist 12–HHT in its BLT2-bound state and a model of interaction of the ligand with the receptor based on a conformational homology modeling associated with docking simulations. Put into perspective with the data obtained with leukotriene B4, our results illuminate the ligand selectivity of BLT2 and may help define new molecules to modulate the activity of this receptor.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Casiraghi, Marina 2 ; Point Elodie 3 ; Damian, Marjorie 4 ; Rieger Jutta 5 ; Bon, Christel Le 3 ; Pozza Alexandre 3 ; Moncoq Karine 3 ; Jean-Louis, Banères 4 ; Catoire, Laurent J 3 1 Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico–Chimique (FRC 550), Paris, France (GRID:grid.450875.b) (ISNI:0000 0004 0643 538X); Institut de Chimie Séparative de Marcoule, ICSM UMR 5257, Site de Marcoule, Bâtiment 426, BP 17171, Bagnols sur Cèze Cedex, France (GRID:grid.462049.d) (ISNI:0000 0004 0384 1091)
2 Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico–Chimique (FRC 550), Paris, France (GRID:grid.450875.b) (ISNI:0000 0004 0643 538X); Stanford University School of Medicine, Department of Molecular and Cellular Physiology, Stanford California, USA (GRID:grid.168010.e) (ISNI:0000000419368956)
3 Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico–Chimique (FRC 550), Paris, France (GRID:grid.450875.b) (ISNI:0000 0004 0643 538X)
4 Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, Montpellier, France (GRID:grid.462008.8)
5 Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, Paris Cedex, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282)




