It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Sodium glucose cotransporter 2 (SGLT2) inhibitors have shown greater reductions of cardiovascular event risks than dipeptidyl peptidase-4 (DPP4) inhibitors, whereby possible mechanisms may involve the better pleiotropic effects of SGLT2 inhibitors. However, no published data are currently available to directly compare glycemic and pleiotropic effects in real-world type 2 diabetes patients initiating SGLT2 inhibitors or DPP4 inhibitors.
Method
We conducted a retrospective cohort study by analyzing the Chang Gung Research Database, the largest multi-institutional electronic medical records database in Taiwan. We included patients newly receiving SGLT2 inhibitor or DPP4 inhibitor intensification therapy for type 2 diabetes from 2016 to 2017. We matched SGLT2 inhibitor users to DPP4 inhibitor users (1:4) by propensity scores to ensure comparable characteristics between the groups. We primarily evaluated 1-year post-treatment changes of hemoglobin A1c (HbA1c) after SGLT2 inhibitor or DPP4 inhibitor initiation, using two-tailed independent t-test. We also evaluated post-treatment changes in body weight, systolic blood pressure (SBP), alanine aminotransferase (ALT) and estimated glomerular filtration rate (eGFR) values, associated with SGLT2 inhibitors and DPP4 inhibitors.
Results
We identified a cohort of 2028 SGLT2 inhibitors and 8112 matched DPP4 inhibitors new users. SGLT2 inhibitors and DPP4 inhibitors showed similar HbA1c reductions (− 1.0 vs. − 1.1%; P = 0.076), but patients receiving SGLT2 inhibitors had greater improvements in body weight (− 1.5 vs. − 1.0 kg; P = 0.008), SBP (− 2.5 vs. − 0.7 mmHg; P < 0.001) and ALT values (− 4.1 vs. − 0.0 U/l; P < 0.001) and smaller declines in eGFR values (− 2.0 vs. − 3.5 ml/min/1.73 m2; P < 0.001) when compared to DPP4 inhibitors.
Conclusion
SGLT2 inhibitors had glucose-lowering effects comparable to those of DPP4 inhibitors but more favorable pleiotropic effects on body weight, ALT and eGFR changes, potentially improving type 2 diabetes patients’ cardio-metabolic disease risks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer