Full Text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

China is currently the world's largest emitter of both CO2 and short-lived air pollutants. Ecosystems in China help mitigate a part of the country's carbon emissions, but they are subject to perturbations in CO2, climate, and air pollution. Here, we use a dynamic vegetation model and data from three model inter-comparison projects to examine ecosystem responses in China under different emission pathways towards the 1.5 C warming target set by the Paris Agreement. At 1.5 C warming, gross primary productivity (GPP) increases by 15.5±5.4 % in a stabilized pathway and 11.9±4.4 % in a transient pathway. CO2 fertilization is the dominant driver of GPP enhancement and climate change is the main source of uncertainties. However, differences in ozone and aerosols explain the GPP differences between pathways at 1.5 C warming. Although the land carbon sink is weakened by 17.4±19.6 % in the stabilized pathway, the ecosystems mitigate 10.6±1.4 % of national emissions in the stabilized pathway, more efficient than the fraction of 6.3±0.8 % in the transient pathway. To achieve the 1.5 C warming target, our analysis suggests a higher allowable carbon budget for China under a stabilized pathway with reduced emissions in both CO2 and air pollutants.

Details

Title
Pathway dependence of ecosystem responses in China to 1.5 ∘C global warming
Author
Xu, Yue 1   VIAFID ORCID Logo  ; Liao, Hong 1 ; Wang, Huijun 2 ; Zhang, Tianyi 3 ; Unger, Nadine 4   VIAFID ORCID Logo  ; Sitch, Stephen 4 ; Feng, Zhaozhong 5   VIAFID ORCID Logo  ; Yang, Jia 6 

 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China 
 Ministry of Education Key Laboratory of Meteorological Disaster, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST, Nanjing, 210044, China 
 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China 
 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QE, UK 
 Institute of Ecology, School of Applied Meteorology, NUIST, Nanjing, 210044, China 
 Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA 
Pages
2353-2366
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2366239867
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.