It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Grass phytoliths are the most common phytoliths in sediments; recognizing grass phytolith types is important when using phytoliths as a tool to reconstruct paleoenvironments. Grass bulliform cells may be silicified to large size parallelepipedal or cuneiform shaped phytoliths, which were often regarded as of no taxonomic value. However, studies in eastern Asia had identified several forms of grass bulliform phytoliths, including rice bulliform phytolith, a phytolith type frequently used to track the history of rice domestication. Identification with a higher level of taxonomic resolution is possible, yet a systematic investigation on morphology of Poaceae bulliform phytoliths is lacking. We aimed at providing a morphological description of bulliform phytoliths of Poaceae from Taiwan based on morphometric measurements in anatomical aspect. The results are important references for paleo-ecological studies.
Result
The morphology of grass bulliform phytoliths is usually consistent within a subfamily; the end profile is relatively rectangular in Panicoideae and Micrairoideae, whereas cuneiform to nearly circular in Oryzoideae, Bambusoideae, Arundinoideae, and Chloridoideae. Bulliform phytoliths were seldom observed in Pooideae. Certain morphotypes are limited to plants growing in specific environments. For example, large, thin, and pointed bulliform phytoliths are associated with wet habitat; Chloridoideae types are mostly from C4 plants occupying open arid places.
Conclusion
Grass bulliform phytoliths can be identified at least to the subfamily level, and several forms were distinguished within large subfamilies. Previously un-reported silicified cell types, i.e., arm cells and fusoids, and two special trichome phytolith types associated with bulliform phytoliths, were described. Morphometric methods were great tools for delimiting morphotypes; with refined morphological classification the association between forms and habit/habitats was revealed. The knowledge provides new ways to interpret phytolith assemblage data, and it is especially useful when the sediments are enriched in large blocky phytoliths.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer