Abstract

After centuries of human-mediated disturbances, Caribbean reef communities are vastly different from those described in the 1950s. Many are functionally dominated by macroalgae, but this community state represents only one of several possibilities into which present-day coral reefs can transition. Octocorals have always been abundant on Caribbean reefs, but increases in their abundance over the last few decades suggest that arborescent octocorals have the potential to expand their populations on reefs that hitherto had been dominated by scleractinians. Here we show that octocoral-dominated communities at three sites on the fringing reefs of St. John, US Virgin Islands, were resilient to the effects of two Category 5 hurricanes in 2017. We describe the dynamics of octocoral communities over five years at three sites on shallow reefs (~9-m depth), and test for the effects of Hurricanes Irma and Maria. The hurricanes depressed the densities of juvenile and adult octocoral colonies as much as 47%. However, there were only weak effects on species richness and the relative abundances of the octocoral species. The hurricanes did not alter patterns of spatial variability in octocoral community structure that existed among sites prior to the storms. The density of octocoral recruits (individuals ≤ 5 cm high) was reduced in the year following the hurricanes, mainly due to a decline in abundance of recruits <0.5 cm, but returned to pre-storm densities in 2019. Persistently high octocoral recruitment provides a mechanism supporting ecological resilience of these communities. Continuing environmental degradation is a threat to all tropical marine communities, but the reefs of St. John illustrate how “octocoral forests” can persist as the structurally dominant community on Caribbean reefs.

Details

Title
Resilience of Octocoral Forests to Catastrophic Storms
Author
Lasker, H R 1   VIAFID ORCID Logo  ; Martínez-Quintana, Á 1 ; Bramanti, L 2 ; Edmunds, P J 3   VIAFID ORCID Logo 

 University at Buffalo, Department of Environment and Sustainability and Department of Geology, Buffalo, USA (GRID:grid.273335.3) (ISNI:0000 0004 1936 9887) 
 CNRS-Sorbonne Université, Laboratoire d’Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique de Banyuls sur Mer, Banyuls sur Mer, France (GRID:grid.273335.3) 
 California State University, Department of Biology, Northridge, USA (GRID:grid.253563.4) (ISNI:0000 0001 0657 9381) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2375479887
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.