Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

China has made some progress in controlling PM2.5 (particulate matter with an aerodynamic diameter of ≤2.5 μm) pollution, but there are still some key areas that need further strengthening. Considering that excessive prevention and control efforts affect economic development, this paper combined an empirical orthogonal function, a continuous wavelet transform, and a concentration-weighted trajectory method to study joint regional governance during key pollution periods to provide suggestions for the efficient control of PM2.5. The results from our panel of data of PM2.5 in China from 2016 to 2018 could be decomposed into two modes. In the first mode, the pollution center was in central Shaanxi Province, and the main eruption period was from November to January of the following year. As the center of this region, Xi’an should cooperate with the four cities in eastern Sichuan (Nanchong, Guangan, Bazhong, and Dazhou) to control PM2.5, since the eruption occurred in this area. Moreover, governance should last for at least two cycles, where one cycle is at least 23 days. The pollution center of the second mode was in the western part of Xinjiang. Therefore, after the prevention and control efforts during the first mode are completed, the regional city of Kashgar should continue to build a joint governance zone for PM2.5 along the Tianshan mountains in the east, focusing on prevention and control over two cycles (where one cycle is 28 days).

Details

Title
Joint Governance Regions and Major Prevention Periods of PM2.5 Pollution in China Based on Wavelet Analysis and Concentration-Weighted Trajectory
Author
Li, Youting  VIAFID ORCID Logo  ; Zhao, Wenhui; Fu, Jianing; Liu, Zhiqiang; Li, Congying; Zhang, Jingying; He, Chuan; Wang, Kai
First page
2019
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2375665872
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.