Abstract

Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.

Vos de Wael et al. developed an open source tool called BrainSpace to quantify cortical gradients using 3 structural or functional imaging data. Their toolbox enables gradient identification, comparison, 4 visualization, and association with other brain features.

Details

Title
BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
Author
Vos de Wael Reinder 1 ; Benkarim Oualid 1   VIAFID ORCID Logo  ; Casey, Paquola 1 ; Lariviere, Sara 1 ; Royer, Jessica 1   VIAFID ORCID Logo  ; Tavakol Shahin 1 ; Xu, Ting 2 ; Seok-Jun, Hong 2   VIAFID ORCID Logo  ; Langs Georg 3 ; Valk Sofie 4 ; Misic Bratislav 1   VIAFID ORCID Logo  ; Milham, Michael 5 ; Margulies, Daniel 6 ; Smallwood, Jonathan 7 ; Bernhardt, Boris C 1 

 McGill University, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649) 
 McGill University, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649); Child Mind Institute, Center for the Developing Brain, New York, USA (GRID:grid.428122.f) 
 Medical University of Vienna, Vienna, Austria (GRID:grid.22937.3d) (ISNI:0000 0000 9259 8492) 
 Forschungszentrum Juelich - Heinrich Heine Universitaet Duesseldorf, Institute for Neuroscience and Medicine; 7/Institute of Systems Neuroscience, Juelich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X) 
 Child Mind Institute, Center for the Developing Brain, New York, USA (GRID:grid.428122.f) 
 Institut du Cerveau et de la Moelle épinière, Frontlab, Paris, France (GRID:grid.425274.2) (ISNI:0000 0004 0620 5939) 
 University of York, Department of Psychology, Heslington, UK (GRID:grid.5685.e) (ISNI:0000 0004 1936 9668) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2376715849
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.