Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Refining microstructure is an important issue for laser additive manufacturing (LAM) of titanium alloy. In the present work, the microstructures of LAM-fabricated Ti6Al4V alloy were refined using a low energy density with the combination of a small spot diameter, a low laser power, and a high scanning speed. The microstructure, hardness, wear performance, and molten pool thermal behavior of LAM-fabricated Ti6Al4V coatings were studied. The results show that the grain sizes of both prior β and α phases are strongly dependent on the cooling rate of the molten pool. The fine prior β grains and submicron-scale acicular α phases were obtained under a low energy density of 75 J mm−2 due to the high cooling rate of the molten pool. In addition, the as-fabricated Ti6Al4V sample with submicron-scale acicular α phase showed a very high hardness of 7.43 GPa, a high elastic modulus of 133.6 GPa, and a low coefficient of friction of 0.48. This work provides a good method for improving the microstructure and mechanical performance of LAM-fabricated Ti6Al4V alloy.

Details

Title
Enhancing Hardness and Wear Performance of Laser Additive Manufactured Ti6Al4V Alloy Through Achieving Ultrafine Microstructure
Author
Li, Yanqin; Song, Lijun; Xie, Pan; Cheng, Manping; Xiao, Hui
First page
1210
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2376858961
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.