It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Tamoxifen (TAM) is a cell type-specific anti-estrogen and is applied to improve the survival of patients with estrogen receptor positive (ER +) breast cancer. However, long-term TAM use can induce serious drug resistance, leading to breast cancer recurrence and death in patients. Further, it is almost useless among patients with estrogen receptor negative (ER −) breast cancer. Shikonin (SK) is a natural product broadly explored in cancer therapy. Some studies have demonstrated the combined treatment of SK and clinical anticancer drugs including TAM on various tumors. However, the combined effect of SK and 4-hydroxytamoxifen (4-OHT) on ER- breast cancer is not known. The current study aimed to assess the combination effects of SK and 4-OHT on human breast cancer cells, MCF-7 (ER +) and MDA-MB-435S (ER −), in vitro and in vivo and to investigate the underlying mechanisms.
Methods
CCK-8 assays and flow cytometry were conducted to determine the cell viability and apoptotic profiles of human breast cancer cell lines (MCF-7 and MDA-MB-435S) treated with SK, 4-OHT, and the combination. ROS and JC-1 assays were used to determine ROS level and mitochondrial membrane potential. Western blot analysis was performed to investigate proteins that are associated with apoptosis. Haematoxylin & Eosin (HE) staining was used to detect the tumor and kidney morphology of mice. TUNEL and immunohistochemical staining were performed to detect Ki67 expression level and cell apoptotic profile in tumor tissues.
Results
SK and 4-OHT synergistically inhibited MCF-7 and MDA-MB-435S cell proliferation and promoted apoptosis by reducing mitochondrial membrane potential and increasing the intracellular ROS level. The combination of SK and 4-OHT activated the mitochondrial-dependent apoptosis and the death receptor pathways, significantly regulating the PI3K/AKT/Caspase 9 signaling pathway. Compared with SK and 4-OHT alone, the combination of SK and 4-OHT could better inhibit tumor growth in mice.
Conclusion
The combination of SK and 4-OHT shows highly efficient anticancer effects on breast cancer therapy. SK may be a promising candidate as an adjuvant to 4-OHT for breast cancer treatments, especially for ER- breast cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer