It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Apicomplexans are the causative agents of major human diseases such as malaria and toxoplasmosis. A novel group of apicomplexans, recently named corallicolids, have been detected in corals inhabiting tropical shallow reefs. These apicomplexans may represent a transitional lifestyle between free-living phototrophs and obligate parasites. To shed light on the evolutionary history of apicomplexans and to investigate their ecology in association with corals, we screened scleractinians, antipatharians, alcyonaceans, and zoantharians from shallow, mesophotic, and deep-sea communities. We detected corallicolid plastids using 16S metabarcoding, sequenced the nuclear 18S rRNA gene of corallicolids from selected samples, assembled and annotated the plastid and mitochondrial genomes from a corallicolid that associates with a deep-sea coral, and screened the metagenomes of four coral species for corallicolids.
Results
We detected 23 corallicolid plastotypes that were associated with 14 coral species from three orders and depths down to 1400 m. Individual plastotypes were restricted to coral hosts within a single depth zone and within a single taxonomic order of corals. Some clusters of closely related corallicolids were revealed that associated with closely related coral species. However, the presence of divergent corallicolid lineages that associated with similar coral species and depths suggests that corallicolid/coral relations are flexible over evolutionary timescales and that a large diversity of apicomplexans may remain undiscovered. The corallicolid plastid genome from a deep-sea coral contained four genes involved in chlorophyll biosynthesis: the three genes of the LIPOR complex and acsF.
Conclusions
The presence of corallicolid apicomplexans in corals below the photic zone demonstrates that they are not restricted to shallow-water reefs and are more general anthozoan symbionts. The presence of LIPOR genes in the deep-sea corallicolid precludes a role involving photosynthesis and suggests they may be involved in a different function. Thus, these genes may represent another set of genetic tools whose function was adapted from photosynthesis as the ancestors of apicomplexans evolved towards parasitic lifestyles.
Video abstract
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer