Abstract

The ability to deliver two coherent X-ray pulses with precise time-delays ranging from a few femtoseconds to nanoseconds enables critical capabilities of probing ultra-fast phenomena in condensed matter systems at X-ray free electron laser (FEL) sources. Recent progress made in the hard X-ray split-and-delay optics developments now brings a very promising prospect for resolving atomic-scale motions that were not accessible by previous time-resolved techniques. Here, we report on characterizing the spatial and temporal coherence properties of the hard X-ray FEL beam after propagating through split-and-delay optics. Speckle contrast analysis of small-angle scattering measurements from nanoparticles reveals well-preserved transverse coherence of the beam. Measuring intensity fluctuations from successive X-ray pulses also reveals that only single or double temporal modes remain in the transmitted beam, corresponding to nearly Fourier transform limited pulses.

Details

Title
Double-pulse speckle contrast correlations with near Fourier transform limited free-electron laser light using hard X-ray split-and-delay
Author
Roseker Wojciech 1 ; Lee, Sooheyong 2 ; Walther, Michael 1 ; Lehmkühler Felix 3 ; Hankiewicz Birgit 4 ; Rysov Rustam 1 ; Hruszkewycz, Stephan O 5 ; Brian, Stephenson G 5 ; Sutton, Mark 6 ; Fuoss, Paul H 7 ; Sikorski Marcin 8 ; Aymeric, Robert 9 ; Song, Sanghoon 9 ; Grübel Gerhard 3 

 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Korea Research Institute of Standards and Science, Frontier in Extreme Physics, Daejeon, Republic of Korea (GRID:grid.410883.6) (ISNI:0000 0001 2301 0664); University of Science and Technology, Department of Nanoscience, Daejeon, Korea (GRID:grid.412786.e) (ISNI:0000 0004 1791 8264) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany (GRID:grid.9026.d) (ISNI:0000 0001 2287 2617) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); University of Hamburg, Institute of Physical Chemistry, Hamburg, Germany (GRID:grid.9026.d) (ISNI:0000 0001 2287 2617) 
 Materials Science Division, Argonne National Laboratory, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 McGill University, Department of Physics, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649) 
 Materials Science Division, Argonne National Laboratory, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845); Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); European X-Ray Free-Electron Laser Facility, Schenefeld, Germany (GRID:grid.445003.6) 
 Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2379539834
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.