Full text

Turn on search term navigation

© 2018. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The anti-inflammatory and antioxidant effects of exendin-4 (Ex-4) have been reported previously. However, whether (Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema (HACE) remains poorly understood. In this study, two rat models of HACE were established by placing rats in a hypoxic environment with a simulated altitude of either 6000- or 7000-m above sea level (MASL) for 72 hours. An altitude of 7000 MASL with 72-hours of hypoxia was found to be the optimized experimental paradigm for establishing HACE models. Then, in rats where a model of HACE was established by introducing them to a 7000 MASL environment with 72-hours of hypoxia treatment, 2, 10 and, 100 μg of Ex-4 was intraperitoneally administrated. The open field test and tail suspension test were used to test animal behavior. Routine methods were used to detect change in inflammatory cells. Hematoxylin-eosin staining was performed to determine pathological changes to brain tissue. Wet/dry weight ratios were used to measure brain water content. Evans blue leakage was used to determine blood-brain barrier integrity. Enzyme-linked immunosorbent assay (ELISA) was performed to measure markers of inflammation and oxidative stress including superoxide dismutase, glutathione, and malonaldehyde values, as well as interleukin-6, tumor necrosis factor-alpha, cyclic adenosine monophosphate levels in the brain tissue. Western blot analysis was performed to determine the levels of occludin, ZO-1, SOCS-3, vascular endothelial growth factor, EPAC1, nuclear factor-kappa B, and aquaporin-4. Our results demonstrate that Ex-4 preconditioning decreased brain water content, inhibited inflammation and oxidative stress, alleviated brain tissue injury, maintain blood-brain barrier integrity, and effectively improved motor function in rat models of HACE. These findings suggest that Ex-4 exhibits therapeutic potential in the treatment of HACE.

Details

Title
Exendin-4 inhibits high-altitude cerebral edema by protecting against neurobiological dysfunction
Author
Zhong-Lei, Sun 1 ; Xian-Feng, Jiang 2 ; Yuan-Chi, Cheng 3 ; Ying-Fu, Liu 4 ; Yang, Kai 5 ; Shuang-Long, Zhu 6 ; Xian-Bin Kong 7 ; Tu, Yue 8 ; Ke-Feng Bian 4 ; Zhen-Lin, Liu 8 ; Xu-Yi, Chen 8 

 Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Institute of Traumatic Brain Trauma and Neurological of CAPF, Neurotrauma Repair Key Laboratory of Tianjin, Tianjin; Jinzhou Medical University, Jinzhou, Liaoning Province 
 Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Institute of Traumatic Brain Trauma and Neurological of CAPF, Neurotrauma Repair Key Laboratory of Tianjin; Tianjin Medical University, Tianjin 
 Central Hospital of Fengxian District of Shanghai, Shanghai 
 Logistics University of People's Armed Police Force, Tianjin 
 The No. 2 Hospital of Nanjing, Nanjing, Jiangsu Province 
 Tianjin Medical University, Tianjin 
 Tianjin University of Traditional Chinese Medicine, Tianjin 
 Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Institute of Traumatic Brain Trauma and Neurological of CAPF, Neurotrauma Repair Key Laboratory of Tianjin, Tianjin 
Pages
653-663
Publication year
2018
Publication date
Apr 2018
Publisher
Medknow Publications & Media Pvt. Ltd.
ISSN
16735374
e-ISSN
18767958
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2382142646
Copyright
© 2018. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.