Full text

Turn on search term navigation

© 2017. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

Details

Title
Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method
Author
Hai-peng, Wang 1 ; Zheng-yang, Bi 2 ; Zhou, Yang 1 ; Yu-xuan, Zhou 2 ; Zhi-gong, Wang 3 ; Xiao-ying, Lv 4 

 Institute of RF- & OE-ICs, Southeast University, Nanjing, Jiangsu Province 
 State Key Lab of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 
 Institute of RF- & OE-ICs, Southeast University, Nanjing, Jiangsu Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 
 State Key Lab of Bioelectronics, Southeast University, Nanjing, Jiangsu Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 
Pages
133-142
Publication year
2017
Publication date
Jan 2017
Publisher
Medknow Publications & Media Pvt. Ltd.
ISSN
16735374
e-ISSN
18767958
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2382692886
Copyright
© 2017. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.