It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Microwave optomechanical circuits have been demonstrated to be powerful tools for both exploring fundamental physics of macroscopic mechanical oscillators, as well as being promising candidates for on-chip quantum-limited microwave devices. In most experiments so far, the mechanical oscillator is either used as a passive element and its displacement is detected using the superconducting cavity, or manipulated by intracavity fields. Here, we explore the possibility to directly and parametrically manipulate the mechanical nanobeam resonator of a cavity electromechanical system, which provides additional functionality to the toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to detect parametrically modulated mechanical displacement and squeezed thermomechanical motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier for intracavity microwave photons. Future perspectives of optomechanical systems with a parametrically driven mechanical oscillator include exotic bath engineering with negative effective photon temperatures, or systems with enhanced optomechanical nonlinearities.
Microwave circuits are interesting tools for microwave optomechanics and quantum information processing. Here, the authors demonstrate a phase-sensitive microwave amplifier by using parametric frequency modulation of a MHz mechanical nanobeam integrated in a superconducting microwave cavity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Delft University of Technology, Kavli Institute of Nanoscience, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740)
2 Delft University of Technology, Kavli Institute of Nanoscience, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740); Paul-Drude-Institut für Festkörperphysik Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin, Germany (GRID:grid.5336.3) (ISNI:0000 0004 0497 2560)