Full text

Turn on search term navigation

Copyright © 2020 Zhiyong Liu and Qiuyan Xu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

This paper considers some multiscale radial basis function collocation methods for solving the two-dimensional Monge–Ampère equation with Dirichlet boundary. We discuss and study the performance of the three kinds of multiscale methods. The first method is the cascadic meshfree method, which was proposed by Liu and He (2013). The second method is the stationary multilevel method, which was proposed by Floater and Iske (1996), and is used to solve the fully nonlinear partial differential equation in the paper for the first time. The third is the hierarchical radial basis function method, which is constructed by employing successive refinement scattered data sets and scaled compactly supported radial basis functions with varying support radii. Compared with the first two methods, the hierarchical radial basis function method can not only solve the present problem on a single level with higher accuracy and lower computational cost but also produce highly sparse nonlinear discrete system. These observations are obtained by taking the direct approach of numerical experimentation.

Details

Title
On Multiscale RBF Collocation Methods for Solving the Monge–Ampère Equation
Author
Liu, Zhiyong  VIAFID ORCID Logo  ; Xu, Qiuyan  VIAFID ORCID Logo 
Editor
Mohammad D Aliyu
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2384137377
Copyright
Copyright © 2020 Zhiyong Liu and Qiuyan Xu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/