It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ensemble learning helps improve machine learning results by combining several models and allows the production of better predictive performance compared to a single model. It also benefits and accelerates the researches in quantitative structure–activity relationship (QSAR) and quantitative structure–property relationship (QSPR). With the growing number of ensemble learning models such as random forest, the effectiveness of QSAR/QSPR will be limited by the machine’s inability to interpret the predictions to researchers. In fact, many implementations of ensemble learning models are able to quantify the overall magnitude of each feature. For example, feature importance allows us to assess the relative importance of features and to interpret the predictions. However, different ensemble learning methods or implementations may lead to different feature selections for interpretation. In this paper, we compared the predictability and interpretability of four typical well-established ensemble learning models (Random forest, extreme randomized trees, adaptive boosting and gradient boosting) for regression and binary classification modeling tasks. Then, the blending methods were built by summarizing four different ensemble learning methods. The blending method led to better performance and a unification interpretation by summarizing individual predictions from different learning models. The important features of two case studies which gave us some valuable information to compound properties were discussed in detail in this report. QSPR modeling with interpretable machine learning techniques can move the chemical design forward to work more efficiently, confirm hypothesis and establish knowledge for better results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The University of Tokyo, Department of Chemical System Engineering, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X)