Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zinc oxide (ZnO) is a wide-band-gap semiconductor that is promising for use as a transparent conductive oxide film. To date, to improve their optoelectrical properties, pristine ZnO films have been doped with metals using various techniques. In this study, nanostructured Cu-ZnO thin films were synthesized using a modified two-step radio frequency magnetron sputtering technique with separate ZnO and metallic Cu targets. Controlling the timing of the Cu/ZnO co-sputtering and ZnO-only sputtering steps afforded a significant change in the resulting nanostructures, such as uniform Cu-ZnO and broccoli-structured Cu-ZnO thin films. Using various measurement techniques, the influence of Cu doping was analyzed in detail. Furthermore, a crystal growth model for the formation of the broccoli-like clusters was suggested. The Cu-ZnO thin films synthesized using this technique demonstrate a highly improved conductivity with some loss in optical transmittance.

Details

Title
Tuning the Morphology and Properties of Nanostructured Cu-ZnO Thin Films Using a Two-Step Sputtering Technique
Author
Jae-Ho, Lee; Oh, Kwonwoo; Jung, Kyungeun; Wilson, K C; Man-Jong, Lee  VIAFID ORCID Logo 
First page
437
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2385088520
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.