Full Text

Turn on search term navigation

© 2020 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hurricanes are powerful agents of destruction with significant socioeconomic impacts. A persistent problem due to the large-scale evacuations during hurricanes in the southeastern United States is the fuel shortages during the evacuation. Computational models can aid in emergency preparedness and help mitigate the impacts of hurricanes. In this paper, we model the hurricane fuel shortages using the SIR epidemic model. We utilize the crowd-sourced data corresponding to Hurricane Irma and Florence to parametrize the model. An estimation technique based on Unscented Kalman filter (UKF) is employed to evaluate the SIR dynamic parameters. Finally, an optimal control approach for refueling based on a vaccination analogue is presented to effectively reduce the fuel shortages under a resource constraint. We find the basic reproduction number corresponding to fuel shortages in Miami during Hurricane Irma to be 3.98. Using the control model we estimated the level of intervention needed to mitigate the fuel-shortage epidemic. For example, our results indicate that for Naples- Fort Myers affected by Hurricane Irma, a per capita refueling rate of 0.1 for 2.2 days would have reduced the peak fuel shortage from 55% to 48% and a refueling rate of 0.75 for half a day before landfall would have reduced to 37%.

Details

Title
Fuel shortages during hurricanes: Epidemiological modeling and optimal control
Author
Islam, Sabique; Namilae, Sirish; Prazenica, Richard; Liu, Dahai
First page
e0229957
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2385223146
Copyright
© 2020 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.