It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recently, quantum anomalous Hall effect with spontaneous ferromagnetism was observed in twisted bilayer graphenes (TBG) near 3/4 filling. Importantly, it was observed that an extremely small current can switch the direction of the magnetization. This offers the prospect of realizing low energy dissipation magnetic memories. However, the mechanism of the current-driven magnetization switching is poorly understood as the charge currents in graphenes are generally believed to be non-magnetic. In this work, we demonstrate that in TBG, the twisting and substrate induced symmetry breaking allow an out of plane orbital magnetization to be generated by a charge current. Moreover, the large Berry curvatures of the flat bands give the Bloch electrons large orbital magnetic moments so that a small current can generate a large orbital magnetization. We further demonstrate how the charge current can switch the magnetization of the ferromagnetic TBG near 3/4 filling as observed in the experiments.
The mechanism of current-driven magnetization switching in twisted bilayer graphene (TBG) is poorly understood. Here, He et al. show that a small current can generate a large orbital magnetization due to symmetry breaking by the twisting and substrate in TBG, leading to a giant orbital magnetoelectric effect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Hong Kong University of Science and Technology, Department of Physics, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450)
2 Stanford University, Department of Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771)