Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper focuses on the electromagnetically stirred process for manufacturing the material required for the semi-solid forming method. The maximum weight of the molten metal used at a laboratory scale in the currently published research is 3 kg. However, a large-scale electromagnetic device is needed when using a material with a maximum weight of 5 kg or more of the molten metal used in the actual industry. Therefore, controllers in this study are installed at each pole in the electromagnetic stirrer, which has six poles in order to stir materials weighing 5 kg or more. The current is input to the adjacent pole counterclockwise (CAMP), and to the symmetrical poles counterclockwise (CSMP). The experiment results show that the current method input to the CSMP can generate the highest electromagnetic force at the center of molten metal. A phase analysis is performed for the size and the roundness of primary α-Al particle from the material prepared by different input currents. The degree of roundness of primary α-Al particles is better when the current is input to the symmetrical poles counterclockwise.

Details

Title
Effect of Current Input Method on A356 Microstructure in Electromagnetically Stirred Process
Author
Roh, Joong Suk; Heo, Min; Jin, Chul Kyu  VIAFID ORCID Logo  ; Jin Ha Park; Chung Gill Kang
First page
460
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2387112555
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.