Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High dynamic range (HDR) imaging is used to represent scenes with a greater dynamic range of luminance on a standard dynamic range display. Usually, HDR images are synthesized through base–detail separations. The base layer is used for tone compression and the detail layer is used for detail preservation. The representative detail-preserved algorithm iCAM06 has a tendency to reduce the sharpness of dim surround images, because of the fixed edge-stopping function of the fast-bilateral filter (FBF). This paper proposes a novel base–detail separation and detail compensation technique using the contrast sensitivity function (CSF) in the segmented frequency domain. Experimental results show that the proposed rendering method has better sharpness features and image quality than previous methods correlated by the human visual system.

Details

Title
Contrast Sensitivity Based Multiscale Base–Detail Separation for Enhanced HDR Imaging
Author
Hyuk-Ju Kwon; Sung-Hak, Lee  VIAFID ORCID Logo 
First page
2513
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2388355618
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.