Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sintering solidification is an effective way to treat soil contaminated with nonvolatile heavy metal. The ceramsite prepared from contaminated soil after sintering can be used as lightweight aggregate in concrete. The preparation process of ceramsite can be divided into two steps: granulation and sintering. As one of the key processes, granulation is directly related to the final solidification and physical properties of ceramsite, and the properties of the clay are directly related to the granulation process. In this work, clays from different regions granulated with disc granulation were studied and compared. The results showed that different clays had significantly different performances in granulation with the same granulation system, and each clay had its own best process parameter. The significance analysis showed that the volume surface mean diameter and the reduction ratio had the most significant impact on the granulated fraction among all the factors. No matter which process parameter was used, as the particle size increased, the granulated fraction increased first and then decreased, and the best results were obtained when the average volume diameter was about 20.5 µm. Furthermore, as the reduction ratio increased, the granulated fraction decreased. These two factors are easy to measure and can be used for predicting the granulation effect of different clays, which can further guide industrial production.

Details

Title
Study on the Properties and Process Parameters of Different Clays in Disc Granulation
Author
Li, Hui; Zhang, Jingjie; Zheng, Wukui; Cui, Tian; Yang, Yuxuan
First page
1714
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2388359220
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.