Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid development of industrial internet of thing (IIoT), the distributed topology of IIoT and resource constraints of edge computing conduct new challenges to traditional data storage, transmission, and security protection. A distributed trust and allocated ledger of blockchain technology are suitable for the distributed IIoT, which also becomes an effective method for edge computing applications. This paper proposes a resource constrained Layered Lightweight Blockchain Framework (LLBF) and implementation mechanism. The framework consists of a resource constrained layer (RCL) and a resource extended layer (REL) blockchain used in IIoT. We redesign the block structure and size to suit to IIoT edge computing devices. A lightweight consensus algorithm and a dynamic trust right algorithm is developed to improve the throughput of blockchain and reduce the number of transactions validated in new blocks respectively. Through a high throughput management to guarantee the transaction load balance of blockchain. Finally, we conducted kinds of blockchain simulation and performance experiments, the outcome indicated that the method have a good performance in IIoT edge application.

Details

Title
A Novel Blockchain Framework for Industrial IoT Edge Computing
Author
Xu, Xuesong; Zeng, Zhi; Yang, Shengjie; Shao, Hongyan
First page
2061
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2388401190
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.