Full Text

Turn on search term navigation

Copyright © 2020 F. K. Ommenya et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.

Details

Title
Synthesis, Characterization and Antibacterial Activity of Schiff Base, 4-Chloro-2-{(E)-[(4-Fluorophenyl)imino]methyl}phenol Metal (II) Complexes
Author
Ommenya, F K 1   VIAFID ORCID Logo  ; Nyawade, E A 1 ; Andala, D M 2 ; Kinyua, J 3 

 Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya 
 Department of Chemistry, Multimedia University of Kenya, P.O. Box 15653, Nairobi 00503, Kenya 
 Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya 
Editor
Marcelino Maneiro
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
20909063
e-ISSN
20909071
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2388693787
Copyright
Copyright © 2020 F. K. Ommenya et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/