Full Text

Turn on search term navigation

© 2020 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the assumption that the VMD technique is essentially a set of adaptive Wiener filter banks and its performance depends to a large extent on the preset parameter K (the number of decomposition). A new method named resonance-based sparse adaptive variational mode decomposition (RSAVMD) is proposed for the decomposition of planetary gearbox vibration signals. Tunable Q-Factor Wavelet Transform (TQWT) and morphological component analysis (MCA) are introduced to decompose the original signal into high and low resonance components. High resonance components containing planetary gearbox signals are screened for analysis. At the same time, Quality factor is used to select the number of Variational mode decomposition (VMD) adaptively. This method was applied in fault diagnosis of planetary gearbox. Compared with VMD, RASVMD could extract fault characteristic frequency of planetary gearbox accurately, but VMD lost part of fault information, showing the superiority of RSAVMD. Simultaneously, the selection method of VMD decomposition number in literature was cited, and it was found that the decomposition number selected by the method in this paper was more accurate.

Details

Title
Resonance-based sparse adaptive variational mode decomposition and its application to the feature extraction of planetary gearboxes
Author
Zhu, Jing; Deng, Aidong; Li, Jing; Deng, Minqiang; Sun, Wenqing; Cheng, Qiang; Liu, Yang
First page
e0231540
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2389213077
Copyright
© 2020 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.