It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
At crystalline interfaces where a valence-mismatch exists, electronic, and structural interactions may occur to relieve the polar mismatch, leading to the stabilization of non-bulk-like phases. We show that spontaneous reconstructions at polar La0.7Sr0.3MnO3 interfaces are correlated with suppressed ferromagnetism for film thicknesses on the order of a unit cell. We investigate the structural and magnetic properties of valence-matched La0.7Sr0.3CrO3/La0.7Sr0.3MnO3 interfaces using a combination of high-resolution electron microscopy, first principles theory, synchrotron X-ray scattering and magnetic spectroscopy and temperature-dependent magnetometry. A combination of an antiferromagnetic coupling between the La0.7Sr0.3CrO3 and La0.7Sr0.3MnO3 layers and a suppression of interfacial polar distortions are found to result in robust long-range ferromagnetic ordering for ultrathin La0.7Sr0.3MnO3. These results underscore the critical importance of interfacial structural and magnetic interactions in the design of devices based on two-dimensional oxide magnetic systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 North Carolina State University, Department of Physics, Raleigh, USA (GRID:grid.40803.3f) (ISNI:0000 0001 2173 6074)
2 Flatiron Institute, Center for Computational Quantum Physics, New York, USA (GRID:grid.40803.3f)
3 North Carolina State University, Department of Materials Science and Engineering, Raleigh, USA (GRID:grid.40803.3f) (ISNI:0000 0001 2173 6074)
4 Advanced Light Source, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551)