Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, sensors in smartphones have been widely used in applications, e.g., human activity recognition (HAR). However, the power of smartphone constrains the applications of HAR due to the computations. To combat it, energy efficiency should be considered in the applications of HAR with smartphones. In this paper, we improve energy efficiency for smartphones by adaptively controlling the sampling rate of the sensors during HAR. We collect the sensor samples, depending on the activity changing, based on the magnitude of acceleration. Besides that, we use linear discriminant analysis (LDA) to select the feature and machine learning methods for activity classification. Our method is verified on the UCI (University of California, Irvine) dataset; and it achieves an overall 56.39% of energy saving and the recognition accuracy of 99.58% during the HAR applications with smartphone.

Details

Title
An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition
Author
Chen, Zhimin; Chen, Jianxin; Huang, Xiangjun
First page
2189
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2391145901
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.