Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The real implementation of the maximum power point tracking (MPPT) controllers for the photovoltaic (PV) systems is still a big challenge for researchers working in this field. Often, they use simulation tools to assess the performance of their MPPT algorithms before actual implementation. In this context, this paper aims to propose a trusted simulation of a PV system designed under Proteus software. The proposed PV simulator can be used to verify and evaluate the performance of MPPT algorithms with a closer approximation to the real implementation. The main advantage of this model that it contains a real microcontroller, as can be found in reality, so that same code for the MPPT algorithm used in the simulation will be used in real implementation. In contrast, when using (Powersim Software) PSIM or Matlab/Simulink, the code of the algorithm must be rewritten once the real experiment begins, because these tools don’t provide a microcontroller or an electronic board in which our algorithm can be implemented and tested in the same way as the real experiment. After this section, a modified Hill-Climbing (HC) algorithm is introduced. The proposed algorithm can avoid the drift problem posed by conventional HC under a fast variation in insolation. The simulation results show that this method presents good performance in terms of efficiency (99.21%) and response time (10 ms), which improved by 1.2% and 70 ms respectively compared to the conventional HC algorithm.

Details

Title
Trusted Simulation Using Proteus Model for a PV System: Test Case of an Improved HC MPPT Algorithm
Author
Chalh, Abdelilah  VIAFID ORCID Logo  ; Aboubakr El Hammoumi  VIAFID ORCID Logo  ; Motahhir, Saad  VIAFID ORCID Logo  ; Abdelaziz El Ghzizal; Subramaniam, Umashankar  VIAFID ORCID Logo  ; Aziz Derouich
First page
1943
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2391763882
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.