Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The large number of small scale Distributed Energy Resources (DER) such as Electric Vehicles (EVs), rooftop photovoltaic installations and Battery Energy Storage Systems (BESS), installed along distribution networks, poses several challenges related to power quality, efficiency, and reliability. Concurrently, the connection of DER may provide substantial flexibility to the operation of distribution grids and market players such as aggregators. This paper proposes an optimization framework for the energy management and scheduling of operation for Low Voltage (LV) networks assuring both admissible voltage magnitudes and minimized line congestion and voltage unbalances. The proposed tool allows the utilization and coordination of On-Load Tap Changer (OLTC) distribution transformers, BESS, and flexibilities provided by DER. The methodology is framed with a multi-objective three phase unbalanced multi-period AC Optimal Power Flow (MACOPF) solved as a nonlinear optimization problem. The performance of the resulting control scheme is validated on a LV distribution network through multiple case scenarios with high microgeneration and EV integration. The usefulness of the proposed scheme is additionally demonstrated by deriving the most efficient placement and sizing BESS solution based on yearly synthetic load and generation data-set. A techno-economical analysis is also conducted to identify optimal coordination among assets and DER for several objectives.

Details

Title
Exploiting OLTC and BESS Operation Coordinated with Active Network Management in LV Networks
Author
Kotsalos, Konstantinos; Miranda, Ismael; Dominguez-Garcia, Jose Luis; Leite, Helder  VIAFID ORCID Logo  ; Silva, Nuno; Hatziargyriou, Nikos  VIAFID ORCID Logo 
First page
3332
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2394496012
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.