Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a new capacitive coupling wireless power transfer method for charging electric vehicles. Capacitive coupling wireless power transfer can replace conventional inductive coupling wireless power transfer because it has negligible eddy-current loss, relatively low cost and weight, and good misalignment performance. However, capacitive coupling wireless power transfer has a limitation in charging electric vehicles due to too small coupling capacitance via air with a very high frequency operation. The new capacitive wireless power transfer uses glass as a dielectric layer in a vehicle. The area and dielectric permittivity of a vehicle’s glass is large; hence, a high capacity coupling capacitor can be obtained. In addition, switching losses of a power conversion circuit are reduced by quasi-LLC resonant operation with two transformers. As a result, the proposed system can transfer large power and has high efficiency. A 1.6 kW prototype was designed to verify the operation and features of the proposed system, and it has a high efficiency of 96%.

Details

Title
Capacitive Coupling Wireless Power Transfer with Quasi-LLC Resonant Converter Using Electric Vehicles’ Windows
Author
Yi, KangHyun  VIAFID ORCID Logo 
First page
676
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2394731723
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.